
Local-First Software for Green IT
Lylian Siffre∗‡, Thomas Ledoux∗, Renaud Pawlak†, Jonathan Guery‡

∗IMT Atlantique, Inria, LS2N, UMR 6004, F-44000 Nantes, France
{lylian.siffre, thomas.ledoux}@imt-atlantique.fr

†LocalFlow, Paris, France
renaud.pawlak@localflow.fr

‡Kapela, Paris, France
{lylian.siffre, john.guery}@kapela.fr

Abstract—The growing energy footprint of Information and
Communication Technology (ICT) services has become a critical
environmental concern. While current approaches mainly focus
on optimizing existing architectures, this position paper advocates
for investigating a more fundamental shift: moving from Cloud-
centric to Local-First Software architectures, where data and
computation primarily reside on end-user devices. Through a
preliminary study, we examine the energy consumption implica-
tions of such an architectural shift. We first develop a framework
identifying the main potential impacts across the service stack
(server, network, and client devices). We then discuss these
impacts through three real-world examples, demonstrating how
Local-First Software approaches could reduce energy consump-
tion. Our analysis reveals both opportunities and challenges
in this architectural transformation. While most impacts could
contribute to energy reduction, particularly through decreased
server and network usage, some negative impacts emerge, mainly
around synchronization and client-side computation. These initial
findings suggest that Local-First Software architectures, when
appropriately implemented, could significantly reduce the energy
footprint of digital services. This position paper aims to stimulate
discussion and research in energy-efficient software architectures,
laying the groundwork for future empirical studies on Local-First
Software approaches in sustainable computing.

Index Terms—Local-First Software, Energy Efficiency, Green
Computing, Software Architecture, Distributed Systems, Sustain-
able ICT

I. INTRODUCTION

Most software developed today is Software as a Service
(SaaS), based on a Cloud-centric approach. In this model, the
end-user visualizes the data, performs operations on it, and the
provider processes it, stores it, manages the infrastructure, and
so on. From an environmental point of view, the Information
and Communications Technology (ICT) sector is significantly
impactful. In 2021, Freitag et al. [1] estimated Green House
Gas (GHG) emissions of ICT to be around 2.1 to 3.9% of
global GHG emissions. This estimation precedes the explosion
of artificial intelligence (AI), which is expected to have a
significant and growing impact in the future.

Thus, the field of Green IT, has been very active for reducing
the environmental impact of ICT. Since the global adoption
of SaaS, optimizations have mostly been studied with the
existence of a necessary Cloud. We think it is possible to
make energy savings through an architectural shift in SaaS
development.

In this paper, we try to bring a motivated intuition to
the energy savings made possible through an architectural
paradigm shift, and give an answer to the question:

“What are the impacts of an architectural paradigm
shift on the energy footprint of ICT?”

To answer the question, we identified Local-First Soft-
ware [2] as a promising software architecture. Unlike the
Cloud, Local-First Software advocates for “Onloading” the
computing load back to the end-user devices. That is why we
first take a step back by setting the background of this article
through Cloud Computing before introducing the concept of
Local-First Software. We give the intuition that Local-First
Software can play a role in reducing the energy footprint
of ICT applications. We then motivate our position with
an experiment on a well-known software and its Local-First
Software compliant implementation. To better grasp the extent
of Local-First Software as an energy saving opportunity, we
identify a list of impacts this software architecture has on
service energy consumption. We finally study the impact of
Local-First Software in three real-world examples.

Along with extending the concept of Local-First Software,
the main contribution of this article is:

• Our work complements research efforts on the consump-
tion of ICT services by proposing a paradigm shift in
the fundamental architecture of digital services to reduce
their energy footprint.

• Our work extends the understanding of the energy-related
impacts of Local-First Software by examining the com-
prehensive effects of a complete shift towards Local-First
Software, considering impacts across the entire service
architecture.

The paper is organized as follows. Section II presents the
Background of this paper. Section III presents the Motivation
for this paper. Section IV presents the identified energy
impacts of a Local-First Software architecture. Section V
explores how real-world examples would benefit from this
software architecture. Section VI presents the related work.
Finally, Section VII concludes the paper and discusses future
work.

II. BACKGROUND

The increasing reliance on Cloud Computing has revo-
lutionized collaboration, data processing, and service deliv-

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

ery. However, this transformation has also led to significant
challenges, particularly in terms of energy consumption and
environmental sustainability. In this section, we explore the
historical development of Cloud Computing, its associated
limitations, and the potential of Local-First Software to address
these issues.

A. Cloud Approach

Before the advent of the Internet, collaboration using
computers primarily involved the physical exchange of data
storage media. The Internet has revolutionized this process
by enabling digital sharing, and the use of the Web and e-
mail have become the dominant medium for collaboration. At
the end of the 2000s, Cloud computing became the standard
service architecture, imposing the SaaS (Software as a Service)
model [3]. The SaaS model offers numerous advantages: (i)
it enables end-users to collaborate in real-time, regardless of
their geographical location, leveraging the virtually unlimited
computing power of Cloud servers; (ii) it also alleviates the
need for end-users to manage local storage for their data, as
the service provider assumes full responsibility for data storage
and management.

Despite its advantages, the Cloud approach introduces chal-
lenges, as discussed hereafter.

B. Cloud Challenges

While the Cloud approach has revolutionized service deliv-
ery, it also presents significant challenges. Centralizing data
and traffic introduces inherent vulnerabilities. For example,
consolidated data in centralized datacenters poses cybersecu-
rity risks, making them attractive targets for malicious attacks
[4]–[9]. Similarly, routing all traffic through centralized servers
results in latency, as requests and responses traverse potentially
long physical distances [10]. Furthermore, this centralized
dependency creates an overreliance on server availability,
rendering clients non-responsive in the event of failure.

These challenges can be better understood using the CAP
theorem (Consistency, Availability, and Partition tolerance),
a foundational concept in distributed systems [11]. Cloud
systems often need to balance the trade-offs described by
the CAP theorem. In scenarios where partition tolerance is
non-negotiable due to network unpredictability, systems must
choose between consistency and availability. Many Cloud
services prioritize availability to ensure responsiveness, even
at the cost of occasional inconsistencies, particularly in dis-
tributed databases. This trade-off has implications for latency,
data synchronization, and system reliability.

Beyond these considerations, as described in the introduc-
tion, the environmental impact of Cloud infrastructures is a
critical concern. The field of energy optimization in Cloud
and Edge computing is highly active, with numerous strategies
explored [12].

C. Local-First Software

The concept of Local-First Software was introduced by
Kleppmann et al. in 2019 [2], offering a novel paradigm

that bridges the gap between traditional software and modern
Software as a Service (SaaS) applications. This paradigm is
built on seven foundational principles (called “ideals”), each
designed to address common limitations of Cloud-dependent
systems while prioritizing user autonomy and efficiency.

While these principles emphasize usability, collaboration,
and data sovereignty, they also imply that the software must
operate efficiently on end-user devices. Recognizing this,
we propose an additional principle: Sustainability. This new
“ideal” highlights the importance of designing Local-First
Software to minimize energy consumption and resource uti-
lization, aligning it with the broader goals of Green IT.

III. MOTIVATION

We believe that Local-First Software has the potential
to mitigate the environmental impact of Cloud Computing
by addressing its key inefficiencies. Traditional Cloud-based
systems centralize computation and storage in energy-intensive
data centers, which consume significant power for operations
and cooling, contributing to global carbon emissions. In con-
trast, Local-First Software decentralizes these processes by
leveraging the computational resources of end-user devices.

A. Rationale for Local-First Software as a Sustainable Com-
puting Approach

By minimizing the reliance on centralized infrastructure,
Local-First Software decreases the frequency and volume of
data transmissions. This approach directly reduces the oper-
ational burden on data centers, which are responsible for a
substantial share of ICT energy consumption.

In addition, the network infrastructure supporting Cloud
services is another significant energy consumer [13], requiring
continuous data transfers between clients and servers. Local-
First Software alleviates this by reducing the need for real-time
synchronization, especially for low-collaboration workflows.
This not only lowers energy consumption but also improves
accessibility for users in low-connectivity regions.

Nevertheless, it is important to emphasize that Local-First
Software is not intended to entirely replace Cloud-based
systems. Instead, it seeks to complement the Cloud by “on-
loading” computation and leveraging the power and energy
efficiency of modern end-user devices. This hybrid approach
acknowledges the constraints of local devices, such as limited
computational capacity and storage, while utilizing Cloud
resources for tasks that exceed these limitations. Such a model
ensures that both paradigms work synergistically, optimizing
performance, energy efficiency, and user experience [14]–[16].

As we will advocate in the remainder of this paper, Local-
First Software offers a promising pathway for addressing the
environmental challenges posed by traditional Cloud Com-
puting. Its emphasis on decentralization, network efficiency,
and reduced data center dependency provides an encouraging
foundation for sustainable ICT solutions.

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

Fig. 1. Network bandwidth usage of the laptop during Google Docs
experiment. Total data usage of Google Docs: Online 2400 kilobytes ; Offline
53 kilobytes.

B. Collaborative Editor: a Motivating Experiment

To illustrate the potential of Local-First Software as a
sustainable computing approach, we present a motivating
experiment that highlights its advantages compared to tradi-
tional Cloud-based solutions. Our motivating experiment is the
collaborative text editor. This Cloud-based service, provided
by platforms such as Google Docs, enables users to collaborate
seamlessly, either simultaneously or asynchronously, on a
shared document hosted in the Cloud. However, this collabo-
ration comes at a cost. We measure the resource consumption
(CPU energy and network usage) of Google Docs and try to
highlight the effect of a Local-First Software implementation
by comparing the normal Google Docs version against the
Offline version of Google Docs1 which allows users to edit
documents offline.

To measure resource consumption, we performed a brief
experiment. We automate the writing of a 340-character text
in a Google Docs document. During the experiment, the same
Python script monitors the energy consumption of the laptop
through powermetrics2, network metrics are collected
using Wireshark3. A five-second delay is introduced before
and after the writing experiment, as illustrated in Fig. 1. In this
figure, the blue line represents the network activity in bytes
per second of the Google Docs Online experiment, and the
orange line represents the Google Docs Offline experiment.

The experimental results, illustrated in Fig. 1, reveal a
significant disparity in network traffic generation between
Google Docs Online and Offline modes when performing
identical editing operations. The Online version, depicted by
the blue line, generates approximately 160 times more network
traffic than its Offline counterpart. This substantial difference
comes from their distinct synchronization patterns: while the
Online version transmits data continuously throughout the
editing session, synchronizing at every keystroke, the Offline
version (shown in orange) only transmits data when network

1Google Docs Offline: https://support.google.com/docs/answer/6388102
2Manual page: https://www.unix.com/man-page/osx/1/powermetrics/
3Website: https://www.wireshark.org/

Computer
Google Docs Online

Google Servers

Computer
Google Docs Offline

User types a 340 char document

2400 53Data transfer (KB)

In relation to the document's sizex7000 x156

Google Docs Online Google Docs Offline

0,340 KB 0,340 KB

53 KB2400 KB

Amount of page for $17,6 356

Fig. 2. Schematic representation of the interactions and data transmission
between the actors of the experiment.

connectivity is restored, resulting in a single synchronization
event after approximately 50 seconds of editing. This funda-
mental difference in the frequency of synchronization explains
the marked contrast in the utilization of network resources
between the two implementations.

Fig. 2 details the network interactions between components,
highlighting this significant overhead in data transmission.
This difference in network usage translates to substantial
cost implications: considering current U.S. mobile data rates,
editing 7.6 pages in Google Docs Online would incur the same
cost ($1) as editing 356 pages in Offline mode at the same
synchronization frequency.

In terms of energy, based on the measured CPU energy
consumption of the laptop, our analysis found no noticeable
difference in energy consumption resulting from the use of
either implementation.

C. Preliminary Conclusions

Our results align with related work in [17] and highlight
the significant network overhead associated with Google Docs
online mode during text editing. The variation in network
utilization between these two implementations is due to the
remote storage of the user’s document and the method of
synchronization. According to our measurements, the lap-
top’s energy consumption remains equivalent, whether stor-
ing document updates locally or transmitting them to Cloud
storage. Additionally, in this single-user scenario, the server-
side computational overhead is minimal as no document
merging operations are required, making network traffic the
primary differentiating factor between local and Cloud storage
approaches.

This network overhead poses challenges in regions where
bandwidth is limited or data costs are high (or during failure),
potentially limiting accessibility, and increasing expenses for

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

end-users who rely on mobile data. Substantial savings in data
transmission (2400 KB vs. 53 KB) along with the neutrality
in energy consumption of devices advocates for further study
of the impacts of a Local-First Software architecture on ICT
applications.

IV. LOCAL-FIRST SOFTWARE IMPACTS

This section examines the implications of the Local-First
Software approach on service design. By changing the locality
of the data utilized by services, Local-First Software redis-
tributes the computational load to the precise location of the
data. This reallocation affects devices, networks, and servers,
which represent the main sources of energy consumption in the
ICT sector [13]. In the remainder of this section, we elaborate
on each impact in relation to energy consumption. Each impact
is denoted with either ↘ or ↗ respectively, a positive impact
(i.e., reducing energy) or a negative impact (i.e., increasing
energy).

A. Impact Overview

Server Impacts. The first component affected by a Local-
First Software approach is the server. We identified six ways
in which Local-First Software influences servers:

• (↘) Server uptime: Servers can be powered down while
the end-user device operates autonomously. They are
reactivated only when needed (e.g., for synchronization),
which can decrease the service’s overall energy consump-
tion.

• (↘) Infrastructure scale: Because computational tasks
are performed largely on end-user devices, the infrastruc-
ture can be reduced, reducing both resource and energy
usage.

• (↘) Consolidation strategies: By defining selected time
windows of activity, it becomes possible to consolidate
workloads more effectively. This enables a more efficient
sharing of server resources, therefore, reducing overall
energy consumption [18].

• (↘) Off-peak windows: Providing greater flexibility
in server uptime allows the servers to operate during
off-peak periods. It is also desirable to take advantage
of lower-carbon-intensity electricity, thus reducing the
carbon footprint [19].

• (↘) Resilience and fault-tolerance: End-user devices
act as natural redundancy nodes, reducing the need for
dedicated backup infrastructure, thus reducing the energy
footprint [20]. The use of conflict-free replicated data
types (CRDTs) [21] further enhances system robustness
while minimizing server requirements.

• (↗) Synchronization and merge: As Local-First Soft-
ware needs to handle partitioning, servers have to merge
diverging version of the same files. This load can nega-
tively influence the energy footprint of the server.

Network Impacts. The second component is the network,
where we found four main impacts:

• (↘) Off-peak windows: The ability to delay network
usage until off-peak periods lowers the risk of packet loss

due to congestion. Additionally, utilizing off-peak periods
can reduce the carbon impact of data transmission [22].

• (↘) Server to server synchronization: With reduced
reliance on server redundancy, the network overhead as-
sociated with inter-server synchronization is minimized,
leading to fewer data transfers across the network infras-
tructure.

• (↘) Network topology: The ability to delay network
usage until the end-user device is connected to a less
energy intensive medium (i.e., Wi-Fi vs. 4G) lowers the
global energy consumption of the service.

• (↘ / ↗) Transfer sizes and frequency: Lowering the
frequency and size of data transfers saves energy in two
ways: smaller data packets require less energy to transmit,
and batching data transfers instead of sending them
continuously can further reduce energy consumption [23].
However, in cases where data changes frequently, this
might have a negative impact.

Device Impacts. The final component is the device. We
identified three key impacts:

• (↘) Networking load: Because the dependence on re-
mote servers decreases, devices consume less data on the
network, resulting in a lower energy consumption [24],
[25]. This also conserves cellular data for users with
limited mobile data plans.

• (↗) Computation load: Under a Local-First Software
paradigm, end-user devices conduct most of the compu-
tation, thus increasing their energy consumption.

• (↗) First connection: In a Local-First Software ap-
proach, the initial connection can be network-intensive
because the device must retrieve all essential assets (e.g.,
product databases, JavaScript files) to operate indepen-
dently.

B. Discussion

The shift towards Local-First Software architectures sug-
gests significant potential for reducing both network traffic
and server-side energy consumption. However, this naturally
raises concerns about increased computational burden on end-
user devices compared to traditional Cloud-based approaches.

This tension between server offloading and device care is
essential to achieve genuine sustainability. While Local-First
Software reduces Cloud infrastructure dependencies, it must
do so without accelerating device obsolescence through ex-
cessive local computation. The environmental benefits would
be negated if devices had to be replaced more frequently or
suffered degraded performance.

Our experimental findings (Section III) provide an opti-
mistic perspective on this trade-off. In the context of collabora-
tive text editing, Local-First Software demonstrated device en-
ergy consumption comparable to Cloud-based solutions while
significantly reducing network traffic. This suggests that for
certain types of application, Local-First Software architectures
could decrease overall system energy consumption without
compromising end-user device sustainability.

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

The decision to adopt Local-First software is therefore
presented as an optimization problem, where the objective is to
minimize total energy consumption in the system as a whole,
while respecting device constraints. The optimal solution de-
pends on various factors, including application characteristics,
device capabilities and usage patterns. Future work should
focus on formalizing this optimization problem and identifying
the conditions under which Local-First Software approaches
provide the most sustainable solution.

V. REAL-WORLD EXAMPLES

To further explore how the implementation of Local-First
Software affects network activity and, more generally, resource
utilization, we present three real-world examples. The first is
a collaborative text editor, which we have already discussed
in the motivating experiment. The second is an expense
management software, and the third is a catalog search engine.

A. Collaborative Text Editor

Collaborative text editors are essential tools that allow mul-
tiple users to work on the same document, often in real time.
These platforms, such as Google Docs, Overleaf, and the open-
source CodiMD, have become central to modern workflows in
academic, professional, and personal contexts. Their ability to
provide seamless updates and maintain document integrity in
real-time collaboration is critical to ensuring a high-quality
user experience. As demonstrated in the motivating experi-
ment, the convenience of real-time synchronization comes at
a significant cost in terms of resource consumption. Real-
time editing, as seen in Google Docs, generates substantial
network usage. In this section, we investigate the other effects
of this real-time synchronization mechanism, along with other
collaborative text editing platforms.

Methodology. To evaluate the network usage and energy
efficiency of these platforms, we conducted experiments on
Google Docs, Overleaf, and CodiMD. Each experiment con-
sisted of three tasks:

• Idle: where the document was left open without user
interaction for two minutes to simulate a reading scenario;

• Standard Editing: where a Python script simulated user
input by typing a 340 character long predefined text;

• Copy-Paste Editing: where a block of text is inserted in
a single action to mimic a bulk synchronization approach.

During these tasks, network activity was monitored using
Wireshark4, capturing both the total data transferred and
the number of packets sent during each task. The energy
consumption was measured using a Python script using
powermetrics5. This setup allowed for a direct comparison
of the performance of the platforms under different usage
conditions.

Results. As illustrated by Fig. 3, our experiments showed
that Google Docs transmitted approximately 2.4 megabytes
of data for a 340-character text during standard editing –

4Website: https://www.wireshark.org/
5Manual page: https://www.unix.com/man-page/osx/1/powermetrics/

TABLE I
DATA TRANSFER COMPARISON BETWEEN STANDARD EDITION AND COPY

PASTE EDITION IN BYTES.

Platform Standard (Bytes) Copy-Paste (Bytes) Reduction
Google Docs 2380933 5386,5 99,77%
CodiMD 199725,4 1640,6 99,18%
Overleaf 15405,7 1101 92,85%

an average of 7000 bytes per character. In addition, during
this experiment, Google Docs generated a significant network
activity of 5973 packets, as illustrated in Fig. 4. This highlights
the network inefficiency of current synchronization methods,
particularly in scenarios with single-user editing.

This problem is not unique to Google Docs. Overleaf and
CodiMD, also exhibit high resource consumption, especially
during Idle periods. In these periods, as Google Docs rely on
HTTP requests to synchronize, if there are no updates, then no
request is sent. In the other hand, CodiMD and Overleaf rely
on WebSockets, explaining the network activity even during
Idle. Despite the differences in their underlying technolo-
gies—Google Docs uses HTTP POST requests, while Overleaf
and CodiMD rely on persistent WebSocket connections—all
these platforms share the challenge of being network-intensive.

As illustrated in Fig. 3 and 4, Google Docs and CodiMD
exhibit a similar network intensity, but we observe that Over-
leaf’s network intensity is significantly lower than Google
Docs and CodiMD. This difference is likely due to the
synchronization mechanism employed by these platforms. In
fact, Google Docs and CodiMD synchronize every keystroke,
whereas Overleaf synchronizes periodically every two sec-
onds.

Our last experiment, the Copy-Paste Editing, is conducted
in order to mimic a delayed synchronization mechanism where
the update is sent when the user is finished writing. This
experiment demonstrated that batching updates can signifi-
cantly reduce the number of packets sent and the amount of
data transferred. We summarize the results for this experiment
in Table I. These results show significant network activity
reduction of 97.3% in average.

Discussion. This substantial network overhead is not merely
a symptom of collaborative editing implementation choices,
but rather stems from the fundamental architecture of Cloud-
based services prioritizing real-time synchronization for fault
tolerance and user data backup, and in this example, real-time
collaboration. Maintaining high consistency in distributed sys-
tems requires frequent state synchronization between servers
and clients. This architectural pattern, while ensuring data
durability and consistency, results in significant resource con-
sumption even in single-user scenarios.

To address inefficiencies —particularly for scenarios with
a single active user— we propose rethinking synchroniza-
tion strategies. One option, inspired by Local-First Software
principles, is delayed or bulk synchronization, which involves
sending updates to/from the local database only when nec-
essary, thus reducing both transmission overheads and device
energy consumption. This tactic also improves accessibility

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

Fig. 3. Amount of bytes transferred during the experiments.

Fig. 4. Amount of packets transferred during the experiments.

in low-connectivity or high-cost environments [23], [26]–
[28]. Academic efforts such as PeriText and Automerge (both
leveraging CRDTs) illustrate how collaborative Local-First
Software can be developed [29]–[31].

B. Expenses

Managing employee expenses is a routine task in most
organizations, facilitated by software that allows employees to
record their expenses and submit them for managerial review.
Unlike collaborative editors, expense management software
typically operates as a single-user workflow with periodic
data submissions. This workflow does not require real-time
synchronization or frequent updates, making it particularly
suitable for Local-First Software design principles.

However, many current implementations rely on Cloud ar-
chitectures, introducing inefficiencies that compromise usabil-
ity and increase energy consumption. For example, during our
experiment with Cleemy6, an expense management solution,
we observed that, while some static data are cached, the
application still requires connectivity to the server for essential
operations. If a user attempts to save an expense offline, the
application displays an error message, rejecting the input and
forcing the user to re-enter the data later. This dependency on
uninterrupted connectivity not only has an impact on produc-
tivity, but also increases frustration, especially for employees
in low-connectivity environments [32].

The Cloud approach also introduces unnecessary redun-
dancies. In Cleemy, all expenses are stored on the server
before validation, although most of the required data —such
as invoices or organizational details— is readily available to

6Website: https://www.lucca.fr/finance/notes-de-frais/

Fig. 5. Simulation of the cumulative energy consumption of the expense
management software over a week for Cloud and Local-First Software
implementations.

the user locally and rarely changed. By shifting to a Local-
First Software architecture, the application could allow users
to record and manage expenses entirely offline, synchronizing
only when the user explicitly decides to submit their data. This
approach reduces server interactions and network overhead
while safeguarding the user experience.

A Local-First Software implementation would also enable
providers to optimize server usage. For example, servers
could process expense submissions during predefined synchro-
nization windows, such as weekly or monthly. This would
allow service providers to scale server resources according
to demand, reducing energy consumption and operational
costs. Splitting server functionality into two roles —one for
serving static data and another for processing submissions—
would further streamline operations. A static data server could
remain available at all times, while the processing server could
activate only during synchronization periods, for instance, one
day a week, thus saving up to six days of energy costs per
week.

Methodology. For demonstration purpose, we compare the
energy consumption induced by the servers of the Cloud
implementation and the Local-First Software implementation.
In our simulation, expenses management software is hosted
in Amazon Web Services (AWS). Our estimate of server
consumption is based on the methodology of the open-source
project Cloud Carbon Footprint [33].

We compare the cumulative energy consumption of the
Cloud implementation with a server (Amazon EC2 M8g
xlarge) that has 100% uptime vs. the Local-First Software
implementation with a S3 instance serving the website stat-
ically and a server (Amazon EC2 M8g 12xlarge) turned on
for four hours on Fridays.

Results. Fig. 5 represents the energy consumption of each
implementation over a week, with the energy consumption in
watt-hours represented on the vertical axis. This chart shows
the cumulative energy consumption of the Local-First Soft-
ware implementation and the Cloud implementation. Based on
this simulation, we would expect a 71% reduction in energy

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

consumption when implementing this service following the
Local-First Software approach. This illustrates the substantial
reduction in the energy footprint of the expense management
service if implemented according to the Local-First Software
approach.

Discussion. The benefits of a Local-First Software design
for expense management software go beyond usability im-
provements and cost savings. It represents a paradigm shift
toward more sustainable and efficient software architecture.
The Local-First Software implementation offers more flexibil-
ity for synchronization, allowing service providers to take into
account new information, such as the electrical grid load or
the energy mix [19].

While this approach may not suit all use cases, it offers
a compelling alternative for applications with periodic work-
flows, low collaboration needs, and static data dependencies,
setting a precedent for how business software can balance
functionality with sustainability.

C. Catalog Search Engine

Catalog search engines typically rely on centralized servers
to deliver data to users. While these platforms efficiently
support data exploration and retrieval, their Cloud-centric
architecture presents significant opportunities for energy opti-
mization through Local-First Software principles. This poten-
tial is particularly pronounced because these systems exhibit
two key characteristics: relatively static data and predictable
usage patterns.

Consider a training management platform that includes a
course catalog: most of its data (course descriptions, schedules,
instructor details) changes infrequently, often following spe-
cific academic cycles. This stability makes aggressive caching
not just possible but highly beneficial for energy efficiency.
Instead of repeatedly requesting unchanged data from servers,
clients could maintain local copies and synchronize only when
updates occur, dramatically reducing network traffic and server
load.

Methodology. To quantify the benefits of Local-First Soft-
ware in such contexts, we developed a visualization tool
that models the trade-off between data freshness and network
efficiency. This tool relies on a set of parameters defined
in Table II and compares two implementations: a traditional
Cloud-based approach requiring regular server requests, and a
Local-First Software approach combining initial data caching
with periodic synchronization.

Our tool generates comparative plots (Fig. 6 & Fig. 7)
showing cumulative data transfer over time. The implemen-
tations are modeled using recursive functions. Cloud and
LoFi represents the cumulated bytes transferred by the Cloud
implementation, and Local-First Software implementation, re-
spectively.

Fig. 6. Simulation of the data transferred over time for Scenario 1.
Parameters: Wr = 75000, Fr = 1,Wd = 600000,Ws = 3000, Fs = 1

Fig. 7. Simulation of the data transferred over time for Scenario 2.
Parameters: Wr = 75000, Fr = 2,Wd = 600000,Ws = 3000, Fs = 1

Cloud(1) = Wr ∗ Fr

Cloud(t) = Cloud(t− 1) +Wr ∗ Fr,

LoF i(1) = Wd

LoFi(t) = LoFi(t− 1) +Ws ∗ Fs,

These functions enable direct comparison of bandwidth
consumption patterns between implementations. To ground our
analysis in real-world conditions, we derived our parameters
from the data of an actual training management website used
by French universities. Here Wr represents the typical size of
JSON responses for page loads, and Wd represents a relevant
subset of data for a user.

We examine two representative usage scenarios that demon-
strate how user behavior affects the efficiency trade-offs:

• Scenario 1: Single page visits per time unit (Fr = 1),
representing a user who checks for updates on their first
page.

• Scenario 2: Double page visits per time unit (Fr = 2),
simulating a more active user who explores the database.

Discussion. For our scenarios, Local-First Software imple-
mentations become more network-efficient over time when
compared to Cloud-based solutions. This advantage stems

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

TABLE II
PARAMETER DEFINITIONS FOR DATA TRANSFER SIMULATOR

Parameter Definition

Cloud Weight of the request (Wr) The total data transferred by the request and the response

Frequency of request (Fr) The amount of times this request is sent for each time unit

Local-First Software Weight of the dataset (Wd) The size of the dataset to be downloaded and cached for the Local First implementation

Weight of synchronization (Ws) The total data transferred for the synchronization

Frequency of synchronization (Fs) The amount of times the dataset is synchronized for each time unit

from the trade-off between the initial dataset download and
subsequent lightweight synchronizations versus repeated full-
page downloads. The break-even point—where Local-First
Software becomes more efficient—varies with user behavior:
as shown in our scenarios, doubling the page request frequency
(Fr) significantly reduces the time needed for Local-First Soft-
ware to prove advantageous over the Cloud-based approach.
However, if the synchronization frequency (Fs) and weight
of synchronization (Ws) become higher than the weight of
the request (Wr) and frequency of request (Fr), Local-First
Software can have a negative impact.

Our analytical tool, parameterized with real-world statistics,
enables service designers to make informed decisions about
caching and synchronization strategies based on their specific
use cases. For instance, designers can determine optimal cache
or local database sizes (Wd) and synchronization intervals (Fs)
by modeling their expected user behavior patterns and data
update frequencies.

The results suggest that Local-First Software approaches
can deliver multiple benefits in catalog search engine: reduced
network traffic, lower operational costs, and improved user
experience in low-connectivity scenarios. Additional energy
savings can be achieved through complementary strategies,
such as scheduling server downtime during predictable low-
usage periods, with clients operating on cached data until the
next synchronization window.

These findings have broader implications for database-
driven applications across the IT industry. The principles
demonstrated here—strategic caching, scheduled synchroniza-
tion, and adaptation to usage patterns—could benefit various
enterprise systems, from CRM platforms to inventory man-
agement tools, potentially leading to significant industry-wide
energy efficiency improvements.

D. Discussion on the Impacts

In Section IV, we introduced a set of energy-related impacts.
Fig. 8 illustrates these impacts in relation to our three real-
world examples. Each impact is denoted by a colored star,
indicating its relevance to the corresponding real-world exam-
ple. In the remainder of this section, we summarize the impacts
that Local-First Software has on these examples.

Collaborative Text Editor. As this service is highly collab-
orative and has strong real-time requirements, the server part
of this service is affected in two ways: reduction of the fault
tolerance and resilience infrastructure, and merge overhead.

Indeed, as the client-side software can still edit and view
downloaded documents, if a failure happens on the provider-
side, the application is partition tolerant; thus, the user is still
able to consult and edit its documents. Although, leveraging
the Local-First Software approach, overall network usage can
be reduced by sending batch updates when needed (e.g., a
new viewer opens the document). In addition, the client can
perform synchronization when connected to a less energy-
consuming network, such as Wi-Fi.

Expenses Management Software. In our example, multiple
energy-related impacts are identified when implementing a
Local-First Software architecture. This service relies on mostly
static data and does not require real-time collaboration; this
allows multiple energy reduction actions, such as reducing
the servers’ uptime, synchronizing batch updates in off-peak
hours, and consolidating the server with other services. By
carefully choosing the computation hours, the service provider
can reduce its electricity bill. However, in this example, if
the software has a computing-heavy function such as Optical
Character Recognition (OCR) for reading the user’s expenses,
this will impact the battery of the device.

Catalog Search Engine. This example is affected in the
same way as the Expenses Management Software example. In
addition, in this example, this approach has a negative impact
on the end user’s device, as the device will need to download
all the relevant data on the first connection.

These real-world examples illustrate the complexity of the
trade-offs designers will have to make to follow the Local-
First Software approach. As the Local-First Software approach
advocates for moving the computational load back (“Onload-
ing”) to the end-user devices, the designers will have to think
in a resource-constrained framework. User- and data-centric
designs must be taken into account in order to achieve this
shift. This transition will require educating end-users on their
impact [34] and designers [35] about their implementation
possibilities [36].

VI. RELATED WORK

The environmental impact of ICT services has become a
critical concern, prompting research across multiple levels of
the technology stack [37]–[40]. Efforts to reduce ICT energy
consumption span various domains, including hardware op-
timization, infrastructure management, software architecture,
and user behavior analysis. Our work primarily focuses on
the intersection of infrastructure optimization and software

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

Networking load

Local- First Software Impacts

Collaborative text editor

Catalog search engine

Expenses management software

Server Network Device

Server uptime

Consolidation strategies

Off- peak windows

Infrastructure scale

Off- peak windows

Transfer sizes and frequency

Computation load

First connection

Resilience and fault- tolerance

Server to server synchronization

Synchronization and merge

Network topology

Positive impact

Negative impact

Fig. 8. Local-First Software Impacts Map.

architecture approaches, particularly through the lens of Local-
First Software.

Energy Consumption in ICT Services. At the infrastruc-
ture level, research has focused on optimizing data transmis-
sion through improved routing [41], strategic timing of data
transfers [22], and efficient resource allocation [42]. These
studies demonstrate that relatively simple changes, such as
scheduling data transfers during off-peak periods or optimizing
data routes, can meaningfully reduce energy consumption.

The architectural approach has evolved from centralized
Cloud computing towards Edge computing, aiming to reduce
data transfer distances and processing overhead. Although
Edge computing brings computation closer to end-users by
deploying servers at network edges [43], it still maintains
fundamental dependencies of the server. Some studies point
out that the choice of offloading is not obvious: for instance,
Namboodiri and Ghose [16] challenge assumptions about
the energy efficiency of computational offloading for mobile
devices. In addition, in [44], Ahvar et al. conclude that a
fully distributed architecture consumes less energy than fully
centralized and partly distributed architectures.

Software-level optimization studies have explored various
strategies for reducing energy consumption through code ef-
ficiency and architectural choices [45]–[49]. However, these
approaches typically focus on optimizing within existing
paradigms rather than questioning the fundamental architec-
ture of digital services.

Local-First Software Approaches. The Local-First Soft-
ware paradigm, introduced by Kleppmann et al. [2], emerged
primarily as a solution for data sovereignty and improved
user experience. This approach emphasizes local data storage
and processing. Several implementations have demonstrated
its viability, particularly in collaborative editing scenarios [30]
and text-based applications [29].

Although Local-First Software’s primary focus was not
energy efficiency, few studies have explored its potential
environmental benefits. Initial investigations comparing offline
versus online modes of collaborative tools show promising
results [17]. Some research has specifically examined energy
consumption implications [50], [51], but these studies typically
focus on client-side impacts rather than considering the entire
service ecosystem.

Our work bridges these domains by examining how Local-
First Software principles can be leveraged specifically for
saving energy. Unlike previous studies that either optimize
existing architectures or implement Local-First Software for
other benefits, we provide a comprehensive analysis of how
this architectural shift affects energy consumption across the
entire service stack. This approach represents a fundamental
rethinking of digital service architecture with energy saving as
a primary consideration.

VII. CONCLUSION AND FUTURE WORK

This paper demonstrates how a shift towards Local-First
Software architecture can significantly impact the energy foot-

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

print of ICT applications. Through the analysis of real-world
case studies, we identified thirteen distinct impacts across the
service stack. The most significant positive impacts include
reducing the backup infrastructure and shutting down servers,
while key challenges emerge from synchronization, device
battery, and computing power.

Our findings suggest that Local-First Software architec-
tures offer a promising approach to reducing ICT energy
consumption, particularly as end-device capabilities continue
to improve. However, this architectural shift requires careful
consideration of trade-offs, especially regarding highly collab-
orative and real-time applications.

Future work will focus on two main directions. First, we
will develop Local-First Software Patterns to provide practical
guidance for engineers implementing energy-efficient applica-
tions. These patterns will help identify which functions are
best suited for local processing (“onloading”) based on our im-
pact analysis framework. Second, we plan to conduct in-depth
case studies by transforming existing Cloud-based applications
(such as collaborative editors or enterprise applications) into
Local-First Software versions. This transformation will allow
us to precisely measure and analyze the energy impacts across
the entire stack. We are seeking academic collaborations to
explore these transformations, particularly with researchers
working at the intersection of software engineering, distributed
systems, and sustainable computing, as this interdisciplinary
approach will provide comprehensive insights into the chal-
lenges and opportunities of Local-First Software architectures.

ACKNOWLEDGMENTS

This work was funded by Kapela and the ANRT (Associa-
tion Nationale de la Recherche et de la Technologie) through
the CIFRE (Conventions Industrielles de Formation par la
Recherche) program in partnership with Kapela. AI tools such
as ChatGPT were used for grammar and formatting refinement.
The final content remains the sole responsibility of the authors.

REFERENCES

[1] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair,
and A. Friday, “The real climate and transformative impact of
ICT: A critique of estimates, trends, and regulations,” Patterns,
vol. 2, no. 9, p. 100340, Sep. 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2666389921001884

[2] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan,
“Local-first software: you own your data, in spite of the cloud,” in
Proceedings of the 2019 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software. Athens Greece: ACM, Oct. 2019, p. 154–178. [Online].
Available: https://dl.acm.org/doi/10.1145/3359591.3359737

[3] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
NIST Cloud Computing Reference Architecture: Recommendations of
the National Institute of Standards and Technology (Special Publication
500-292). North Charleston, SC, USA: CreateSpace Independent
Publishing Platform, 2012.

[4] G. T. Bloomberg, Matt Day and N. D. /, “Thousands of amazon
workers listen to alexa users’ conversations,” Apr. 2019. [Online].
Available: https://time.com/5568815/amazon-workers-listen-to-alexa/

[5] N. Confessore, “Cambridge analytica and facebook: The scandal
and the fallout so far,” The New York Times, Apr. 2018. [Online].
Available: https://www.nytimes.com/2018/04/04/us/politics/cambridge-
analytica-scandal-fallout.html

[6] K. Hill, ““god view”: Uber allegedly stalked users for
party-goers’ viewing pleasure (updated).” [Online]. Avail-
able: https://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-
uber-allegedly-stalked-users-for-party-goers-viewing-pleasure/

[7] May 2019. [Online]. Available: https://www.vice.com/en/article/
snapchat-employees-abused-data-access-spy-on-users-snaplion/

[8] Reuters, Aug. 2023. [Online]. Available: https:
//www.reuters.com/business/autos-transportation/tesla-says-two-ex-
employees-behind-may-data-breach-2023-08-21/

[9] Jan. 2025, page Version ID: 1268241230. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=List of
data breaches&oldid=1268241230

[10] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Highly available transactions: Virtues and limitations
(extended version),” no. arXiv:1302.0309, Oct. 2013, arXiv:1302.0309
[cs]. [Online]. Available: http://arxiv.org/abs/1302.0309

[11] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, p. 51–59, Jun. 2002. [Online]. Available:
https://doi.org/10.1145/564585.564601

[12] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy
aware edge computing: A survey,” Computer Communications, vol. 151,
p. 556–580, Feb. 2020.

[13] J. Malmodin, N. Lövehagen, P. Bergmark, and D. Lundén, “Ict sector
electricity consumption and greenhouse gas emissions – 2020 outcome,”
Telecommunications Policy, vol. 48, no. 3, p. 102701, Apr. 2024.

[14] H. Mazouzi, N. Achir, and K. Boussetta, “Dm2-ecop: An efficient
computation offloading policy for multi-user multi-cloudlet mobile edge
computing environment,” ACM Trans. Internet Technol., vol. 19, no. 2,
pp. 24:1–24:24, 2019.

[15] N. Muslim, S. Islam, and J.-C. Grégoire, “Offloading framework for
computation service in the edge cloud and core cloud: A case study
for face recognition,” International Journal of Network Management,
vol. 31, no. 4, p. e2146, 2021.

[16] V. Namboodiri and T. Ghose, “To cloud or not to cloud: A mobile
device perspective on energy consumption of applications.” San
Francisco, CA, USA: IEEE, Jun. 2012, p. 1–9. [Online]. Available:
http://ieeexplore.ieee.org/document/6263712/

[17] A. Vishwanath, F. Jalali, K. Hinton, T. Alpcan, R. W. A. Ayre, and R. S.
Tucker, “Energy consumption comparison of interactive cloud-based and
local applications,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 4, p. 616–626, Apr. 2015.

[18] T. V. T. Duy, Y. Sato, and Y. Inoguchi, “Performance evaluation of
a green scheduling algorithm for energy savings in cloud computing,”
in 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), Apr. 2010, p. 1–8.
[Online]. Available: https://ieeexplore.ieee.org/document/5470908

[19] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-aware computing for
datacenters,” IEEE Transactions on Power Systems, vol. 38, no. 2, p.
1270–1280, Mar. 2023.

[20] Y. Wu, M. Tornatore, C. U. Martel, and B. Mukherjee, “Content
fragmentation: A redundancy scheme to save energy in cloud networks,”
IEEE Transactions on Green Communications and Networking, vol. 2,
no. 4, pp. 1186–1196, 2018.

[21] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems, X. Défago, F. Petit, and V. Villain, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–400.

[22] M. Ficher, F. Berthoud, A.-L. Ligozat, P. Sigonneau, M. Wisslé, and
B. Tebbani, “Assessing the carbon footprint of the data transmission
on a backbone network,” in 2021 24th Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), Mar. 2021,
p. 105–109. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9385551

[23] C. Sengul, M. Bakht, A. F. Harris, T. Abdelzaher, and R. Kravets,
“Improving energy conservation using bulk transmission over high-
power radios in sensor networks,” in 2008 The 28th International
Conference on Distributed Computing Systems. Beijing, China: IEEE,
Jun. 2008, p. 801–808. [Online]. Available: http://ieeexplore.ieee.org/
document/4595956/

[24] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app? fine grained energy accounting on smartphones

This work is pre-review. Content may change.

Accepted for publication at ICT4S 2025. Accepted on April, 2025.

with eprof,” in Proceedings of the 7th ACM european conference
on Computer Systems, ser. EuroSys ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 29–42. [Online].
Available: https://doi.org/10.1145/2168836.2168841

[25] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput
tradeoffs of wifi and bluetooth in smartphones,” in 2011 Proceedings
IEEE INFOCOM, Apr. 2011, p. 900–908. [Online]. Available:
https://ieeexplore.ieee.org/document/5935315

[26] E. J. Vergara, S. Nadjm-Tehrani, and M. Prihodko, “Energybox: Dis-
closing the wireless transmission energy cost for mobile devices,”
Sustainable Computing: Informatics and Systems, vol. 4, no. 2, p.
118–135, Jun. 2014.

[27] K. Naik, “A survey of software based energy saving methodologies for
handheld wireless communication devices,” 2010.

[28] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” 2010.

[29] G. Litt, S. Lim, M. Kleppmann, and P. Van Hardenberg, “Peritext: A
crdt for collaborative rich text editing,” Proceedings of the ACM on
Human-Computer Interaction, vol. 6, no. CSCW2, pp. 1–36, 2022.

[30] M. Kleppmann and A. R. Beresford, “Automerge: Real-time data
sync between edge devices,” in 1st UK Mobile, Wearable and Ubiq-
uitous Systems Research Symposium (MobiUK 2018). https://mobiuk.
org/abstract/S4-P5-Kleppmann-Automerge. pdf. sn, 2018, pp. 101–105.

[31] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of Parallel
and Distributed Computing, vol. 71, no. 3, pp. 354–368, 2011.

[32] M. Hertzum and K. Hornbæk, “Frustration: Still a common user
experience,” ACM Trans. Comput.-Hum. Interact., vol. 30, no. 3, Jun.
2023. [Online]. Available: https://doi.org/10.1145/3582432

[33] [Online]. Available: https://www.cloudcarbonfootprint.org/
[34] C. Zhang, A. Hindle, and D. M. German, “The impact of user choice

on energy consumption,” IEEE Software, vol. 31, no. 3, p. 69–75, May
2014.

[35] S. Murugesan, “Harnessing green it: Principles and practices,” IT Pro-
fessional, vol. 10, no. 1, pp. 24–33, 2008.

[36] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
in 2012 First International Workshop on Green and Sustainable Software
(GREENS), 2012, pp. 55–61.

[37] E. Gelenbe, “Electricity consumption by ict: Facts, trends, and measure-
ments,” Ubiquity, vol. 2023, no. August, pp. 1:1–1:15, 2023.

[38] S. Arora and A. Bala, “A survey: Ict enabled energy efficiency tech-
niques for big data applications,” Cluster Computing, vol. 23, no. 2, p.
775–796, Jun. 2020.

[39] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,” ACM
Comput. Surv., vol. 47, no. 2, pp. 33:1–33:36, 2014.

[40] L. M. Hilty, V. Coroama, M. O. De Eicker, T. Ruddy, and E. Müller,
“The role of ict in energy consumption and energy efficiency,” Report to
the European Commission, DG INFSO, Project ICT ENSURE: European
ICT Sustainability Research, Graz University, vol. 1, pp. 1–60, 2009.

[41] P. Loygue, K. Al Agha, and G. Pujolle, “Carbon footprint of cloud, edge,
and internet of edges,” Annals of Telecommunications, vol. 80, no. 1–2,
p. 153–169, Feb. 2025.

[42] Z. Li, S. Tesfatsion, S. Bastani, A. Ali-Eldin, E. Elmroth, M. Kihl,
and R. Ranjan, “A survey on modeling energy consumption of cloud
applications: Deconstruction, state of the art, and trade-off debates,”
IEEE Transactions on Sustainable Computing, vol. 2, no. 3, p. 255–274,
Jul. 2017.

[43] B. Gill and D. Smith, “The edge completes the cloud: A gartner trend
insight report.”

[44] E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consumption
of cloud, fog, and edge computing infrastructures,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 2, p. 277–288, Apr. 2022.

[45] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom, and R. van
Vliet, “Extending software architecture views with an energy consump-
tion perspective,” Computing, vol. 99, no. 6, p. 553–573, Jun. 2017.

[46] S. Maleki, C. Fu, A. Banotra, and Z. Zong, “Understanding the
impact of object oriented programming and design patterns on energy
efficiency,” in 2017 Eighth International Green and Sustainable
Computing Conference (IGSC), Oct. 2017, p. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8323605

[47] J. Mancebo, F. Garcı́a, and C. Calero, “A process for analysing the
energy efficiency of software,” Information and Software Technology,
vol. 134, p. 106560, Jun. 2021.

[48] G. Procaccianti, P. Lago, and S. Bevini, “A systematic literature review
on energy efficiency in cloud software architectures,” Sustainable Com-
puting: Informatics and Systems, vol. 7, p. 2–10, Sep. 2015.

[49] C. Stier, A. Koziolek, H. Groenda, and R. Reussner, “Model-based
energy efficiency analysis of software architectures,” in Software Archi-
tecture, D. Weyns, R. Mirandola, and I. Crnkovic, Eds. Cham: Springer
International Publishing, 2015, p. 221–238.

[50] Q. Stokkink and J. Pouwelse, “A local-first approach for green smart
contracts,” Distributed Ledger Technologies: Research and Practice,
vol. 3, no. 2, p. 1–21, Jun. 2024.

[51] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep
reinforcement learning for energy-efficient computation offloading in
mobile-edge computing,” IEEE Internet of Things Journal, vol. 9, no. 2,
p. 1517–1530, Jan. 2022.

This work is pre-review. Content may change.

